
Class 9: Statistical distributions II

June 1, 2018

These slides are licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

General

2 / 31

Announcements

Homework 2 posted, due datae is June 6th @ 11:59pm:
http://summer18.cds101.com/assignments/homework-2/

Reading 9 from R for Data Science, questions due on June 6th by 9:00am

All of chapter 7

3 / 31

http://summer18.cds101.com/assignments/homework-2/
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/exploratory-data-analysis.html

Statistical distributions

4 / 31

Extremely skewed data
When data are extremely skewed, transforming them might make modeling easier. A
common transformation is the log transformation.

5 / 31

Extremely skewed data
When data are extremely skewed, transforming them might make modeling easier. A
common transformation is the log transformation.

The histograms on the left shows the distribution of number of basketball games
attended by students. The histogram on the right shows the distribution of log of
number of games attended.

5 / 31

Pros and cons of transformations
Skewed data are easier to model with when they are transformed because outliers
tend to become far less prominent after an appropriate transformation.

However, results of an analysis might be dif�cult to interpret because the log of a
measured variable is usually meaningless.

of games 70 50 25 ···
log10(# of games) 4.25 3.91 3.22 ···

6 / 31

Pros and cons of transformations
Skewed data are easier to model with when they are transformed because outliers
tend to become far less prominent after an appropriate transformation.

However, results of an analysis might be dif�cult to interpret because the log of a
measured variable is usually meaningless.

What other variables would you expect to be extremely skewed?

of games 70 50 25 ···
log10(# of games) 4.25 3.91 3.22 ···

6 / 31

Pros and cons of transformations
Skewed data are easier to model with when they are transformed because outliers
tend to become far less prominent after an appropriate transformation.

However, results of an analysis might be dif�cult to interpret because the log of a
measured variable is usually meaningless.

What other variables would you expect to be extremely skewed?

Salary, housing prices, etc.

of games 70 50 25 ···
log10(# of games) 4.25 3.91 3.22 ···

6 / 31

Quantifying statistical distributions in R

7 / 31

Example data distribution
The following distribution comes from data posted by the US Census Bureau:

8 / 31

Example data distribution
The following distribution comes from data posted by the US Census Bureau:

How can we quantify the shape of this distribution?

8 / 31

Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

9 / 31

Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

mean() : Computes the average

9 / 31

Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

mean() : Computes the average

median() : Computes the median

9 / 31

Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

mean() : Computes the average

median() : Computes the median

min() : Finds the minimum value

9 / 31

Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

mean() : Computes the average

median() : Computes the median

min() : Finds the minimum value

max() : Finds the maximum value

9 / 31

Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

mean() : Computes the average

median() : Computes the median

min() : Finds the minimum value

max() : Finds the maximum value

sd() : Computes the standard deviation

9 / 31

Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

mean() : Computes the average

median() : Computes the median

min() : Finds the minimum value

max() : Finds the maximum value

sd() : Computes the standard deviation

IQR() : Computes the interquartile range

9 / 31

Useful statistical functions
The following R functions will be useful for computing basic statistical measures of
any numerical data column (variable)

mean() : Computes the average

median() : Computes the median

min() : Finds the minimum value

max() : Finds the maximum value

sd() : Computes the standard deviation

IQR() : Computes the interquartile range

percent_rank() : Computes percentiles

9 / 31

Using the statistical functions

10 / 31

Using the statistical functions
Every function except percent_rank() will always return a single quantity

10 / 31

Using the statistical functions
Every function except percent_rank() will always return a single quantity

The summarize() function is appropriate here:

10 / 31

Using the statistical functions
Every function except percent_rank() will always return a single quantity

The summarize() function is appropriate here:

county %>%
 summarize(
 mean = mean(mean_work_travel),
 median = median(mean_work_travel),
 min = min(mean_work_travel),
 max = max(mean_work_travel),
 sd = sd(mean_work_travel),
 iqr = IQR(mean_work_travel)
)

10 / 31

Using the statistical functions
Every function except percent_rank() will always return a single quantity

The summarize() function is appropriate here:

mean median min max sd iqr

22.72558 22.4 4.3 44.2 5.514159 7.1

county %>%
 summarize(
 mean = mean(mean_work_travel),
 median = median(mean_work_travel),
 min = min(mean_work_travel),
 max = max(mean_work_travel),
 sd = sd(mean_work_travel),
 iqr = IQR(mean_work_travel)
)

10 / 31

Using the statistical functions
percent_rank() operates on the full column of values, so it needs to be paired
with mutate()

10 / 31

Using the statistical functions
percent_rank() operates on the full column of values, so it needs to be paired
with mutate()

Once we have the percentiles, we can �nd the cutoff value for each percentile

10 / 31

Using the statistical functions
percent_rank() operates on the full column of values, so it needs to be paired
with mutate()

Once we have the percentiles, we can �nd the cutoff value for each percentile

county %>%
 mutate(
 percentile = percent_rank(mean_work_travel),
 quartile = case_when(# case_when() similar to if_else()
 percentile < 0.25 ~ "Q1", # label between 0 and 0.25 as Q1,
 between(percentile, 0.25, 0.50) ~ "Q2", # between 0.25 and 0.50 as Q2,
 between(percentile, 0.50, 0.75) ~ "Q3", # between 0.50 and 0.75 as Q3,
 percentile >= 0.75 ~ "Q4" # and 0.75 to 1.00 as Q4
)
) %>%
 group_by(quartile) %>%
 summarize(cutoff = max(mean_work_travel)) # cutoff is maximum in quartile

10 / 31

Using the statistical functions
percent_rank() operates on the full column of values, so it needs to be paired
with mutate()

Once we have the percentiles, we can �nd the cutoff value for each percentile

Q1 Q2 Q3 Q4

19 22.4 26.1 44.2

county %>%
 mutate(
 percentile = percent_rank(mean_work_travel),
 quartile = case_when(# case_when() similar to if_else()
 percentile < 0.25 ~ "Q1", # label between 0 and 0.25 as Q1,
 between(percentile, 0.25, 0.50) ~ "Q2", # between 0.25 and 0.50 as Q2,
 between(percentile, 0.50, 0.75) ~ "Q3", # between 0.50 and 0.75 as Q3,
 percentile >= 0.75 ~ "Q4" # and 0.75 to 1.00 as Q4
)
) %>%
 group_by(quartile) %>%
 summarize(cutoff = max(mean_work_travel)) # cutoff is maximum in quartile

10 / 31

Interpreting summary statistics: mean, sd

One standard deviation above and below the mean

11 / 31

Interpreting summary statistics: median, IQR

The median and inter-quartile range

12 / 31

From histograms to probability mass
functions

13 / 31

Data distributions
We've already learned that histograms (geom_histogram()) are a convenient
way to represent numerical data in a single column (variable)

14 / 31

Data distributions
We've already learned that histograms (geom_histogram()) are a convenient
way to represent numerical data in a single column (variable)

mean_work_travel

25.1

25.8

23.8

28.3

33.2

28.1

25.1

...

14 / 31

Data distributions
We've already learned that histograms (geom_histogram()) are a convenient
way to represent numerical data in a single column (variable)

14 / 31

Data distributions
We've already learned that histograms (geom_histogram()) are a convenient
way to represent numerical data in a single column (variable)

A histogram represents the frequency that values show up for a given variable

14 / 31

Data distributions
We've already learned that histograms (geom_histogram()) are a convenient
way to represent numerical data in a single column (variable)

A histogram represents the frequency that values show up for a given variable

binwidth changes the "buckets" for the data, impacting the frequency heights.

14 / 31

Data distributions
We've already learned that histograms (geom_histogram()) are a convenient
way to represent numerical data in a single column (variable)

A histogram represents the frequency that values show up for a given variable

binwidth changes the "buckets" for the data, impacting the frequency heights

14 / 31

Comparing distributions with unequal observations

So far, we've largely skipped over the question of how to compare distributions
with varying numbers of observations

15 / 31

Comparing distributions with unequal observations

So far, we've largely skipped over the question of how to compare distributions
with varying numbers of observations

In our current example of average times to travel to work, we can group the data
by state and compare Virginia to Maryland

15 / 31

Comparing distributions with unequal observations

So far, we've largely skipped over the question of how to compare distributions
with varying numbers of observations

In our current example of average times to travel to work, we can group the data
by state and compare Virginia to Maryland

15 / 31

Comparing distributions with unequal observations

So far, we've largely skipped over the question of how to compare distributions
with varying numbers of observations

In our current example of average times to travel to work, we can group the data
by state and compare Virginia to Maryland

In which state am I more likely to have a 30 minute commute?

15 / 31

Comparing distributions with unequal observations

So far, we've largely skipped over the question of how to compare distributions
with varying numbers of observations

In our current example of average times to travel to work, we can group the data
by state and compare Virginia to Maryland

15 / 31

Comparing distributions with unequal observations

So far, we've largely skipped over the question of how to compare distributions
with varying numbers of observations

In our current example of average times to travel to work, we can group the data
by state and compare Virginia to Maryland

In the dataset, Virginia has 134 counties compared to Maryland's 24 counties

15 / 31

Comparing distributions with unequal observations

So far, we've largely skipped over the question of how to compare distributions
with varying numbers of observations

In our current example of average times to travel to work, we can group the data
by state and compare Virginia to Maryland

In the dataset, Virginia has 134 counties compared to Maryland's 24 counties

We need to normalize the frequency counts

15 / 31

From frequency to probability
Normalization is straightforward, just divide the frequency count in each "bucket"
by the total number of observations in the histogram

16 / 31

From frequency to probability
Normalization is straightforward, just divide the frequency count in each "bucket"
by the total number of observations in the histogram

If you group by categories, that you should divide by the number of observations
in each group

16 / 31

From frequency to probability
Normalization is straightforward, just divide the frequency count in each "bucket"
by the total number of observations in the histogram

If you group by categories, that you should divide by the number of observations
in each group

To normalize the histograms from the prior example, we need to divide the
Virginia frequencies by 134 and the Maryland frequencies by 24

16 / 31

From frequency to probability
Normalization is straightforward, just divide the frequency count in each "bucket"
by the total number of observations in the histogram

If you group by categories, that you should divide by the number of observations
in each group

To normalize the histograms from the prior example, we need to divide the
Virginia frequencies by 134 and the Maryland frequencies by 24

16 / 31

Probability mass function (PMF)

17 / 31

Probability mass function (PMF)

Just like a histogram, except that the bar heights re�ect probabilities instead of
frequency counts

17 / 31

Probability mass function (PMF)

Just like a histogram, except that the bar heights re�ect probabilities instead of
frequency counts

Allows for a meaningful comparison of distributions with different numbers of
observations

17 / 31

Probability mass function (PMF)

Just like a histogram, except that the bar heights re�ect probabilities instead of
frequency counts

Allows for a meaningful comparison of distributions with different numbers of
observations

In which state am I more likely to have a 30 minute commute?

17 / 31

Probability mass function (PMF)

Just like a histogram, except that the bar heights re�ect probabilities instead of
frequency counts

Allows for a meaningful comparison of distributions with different numbers of
observations

In which state am I more likely to have a 30 minute commute?

Maryland

17 / 31

Creating PMFs in R
With ggplot2 , it's straightforward to convert a histogram into a PMF

18 / 31

Creating PMFs in R
With ggplot2 , it's straightforward to convert a histogram into a PMF

county %>%
 filter(state == "Virginia" | state == "Maryland") %>%
 ggplot() +
 geom_histogram(
 mapping = aes(x = mean_work_travel, fill = state),
 position = "identity",
 alpha = 0.5
)

18 / 31

Creating PMFs in R
With ggplot2 , it's straightforward to convert a histogram into a PMF

county %>%
 filter(state == "Virginia" | state == "Maryland") %>%
 ggplot() +
 geom_histogram(
 mapping = aes(x = mean_work_travel, fill = state),
 position = "identity",
 alpha = 0.5
)

18 / 31

Creating PMFs in R
With ggplot2 , it's straightforward to convert a histogram into a PMF

county %>%
 filter(state == "Virginia" | state == "Maryland") %>%
 ggplot() +
 geom_histogram(
 mapping = aes(x = mean_work_travel, fill = state),
 position = "identity",
 alpha = 0.5
)

18 / 31

Creating PMFs in R
With ggplot2 , it's straightforward to convert a histogram into a PMF

county %>%
 filter(state == "Virginia" | state == "Maryland") %>%
 ggplot() +
 geom_histogram(
 mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
 position = "identity",
 alpha = 0.5
)

18 / 31

Obtaining PMF values

19 / 31

Obtaining PMF values
1. Compute them manually

19 / 31

Obtaining PMF values
1. Compute them manually

2. Extract them from your ggplot2 visualization

19 / 31

Obtaining PMF values
1. Compute them manually

2. Extract them from your ggplot2 visualization

19 / 31

Obtaining PMF values
1. Compute them manually

2. Extract them from your ggplot2 visualization

Assign the �gure to a variable

va_md_pmf_figure <- county %>%
 filter(state == "Virginia" | state == "Maryland") %>%
 ggplot() +
 geom_histogram(
 mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
 binwidth = 2,
 center = 0
)

19 / 31

Obtaining PMF values
1. Compute them manually

2. Extract them from your ggplot2 visualization

Assign the �gure to a variable

Use ggplot_build() with pluck() and as_tibble() as follows:

va_md_pmf_figure <- county %>%
 filter(state == "Virginia" | state == "Maryland") %>%
 ggplot() +
 geom_histogram(
 mapping = aes(x = mean_work_travel, y = ..density.., fill = state),
 binwidth = 2,
 center = 0
)

va_md_pmf_data <- va_md_pmf_figure %>%
 ggplot_build() %>%
 pluck("data", 1) %>%
 as_data_frame()

19 / 31

Obtaining PMF values
va_md_pmf_data %>%
 glimpse()

Observations: 30
Variables: 17
$ fill <chr> "#00BFC4", "#F8766D", "#00BFC4", "#F8766D", "#00BFC4"...
$ y <dbl> 0.003731343, 0.003731343, 0.029850746, 0.029850746, 0...
$ count <dbl> 1, 0, 8, 0, 7, 0, 7, 0, 26, 5, 11, 2, 16, 1, 11, 4, 1...
$ x <dbl> 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 2...
$ xmin <dbl> 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 2...
$ xmax <dbl> 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 2...
$ density <dbl> 0.003731343, 0.000000000, 0.029850746, 0.000000000, 0...
$ ncount <dbl> 0.03846154, 0.00000000, 0.30769231, 0.00000000, 0.269...
$ ndensity <dbl> 10.30769, 0.00000, 82.46154, 0.00000, 72.15385, 0.000...
$ PANEL <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ group <int> 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,...
$ ymin <dbl> 0.000000000, 0.003731343, 0.000000000, 0.029850746, 0...
$ ymax <dbl> 0.003731343, 0.003731343, 0.029850746, 0.029850746, 0...
$ colour <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
$ size <dbl> 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5...
$ linetype <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ alpha <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...

19 / 31

Obtaining PMF values
To get the Maryland PMF data:

x density

14 0

16 0

18 0

20 0

22 0.104166666666667

24 0.0416666666666667

26 0.0208333333333333

... ...

md_pmf_data <- va_md_pmf_data %>%
 filter(group == 1) %>%
 select(x, density)

19 / 31

Obtaining PMF values
To get the Virginia PMF data:

x density

14 0.00373134328358209

16 0.0298507462686567

18 0.0261194029850746

20 0.0261194029850746

22 0.0970149253731343

24 0.041044776119403

26 0.0597014925373134

... ...

va_pmf_data <- va_md_pmf_data %>%
 filter(group == 2) %>%
 select(x, density)

19 / 31

Cumulative distribution functions

20 / 31

Data by percentile rank

21 / 31

Data by percentile rank
PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly in�uence what your plot looks like

21 / 31

Data by percentile rank
PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly in�uence what your plot looks like

We can overcome this problem if we convert the data into a sorted list of
percentile ranks

21 / 31

Data by percentile rank
PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly in�uence what your plot looks like

We can overcome this problem if we convert the data into a sorted list of
percentile ranks

Advantages

21 / 31

Data by percentile rank
PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly in�uence what your plot looks like

We can overcome this problem if we convert the data into a sorted list of
percentile ranks

Advantages

Don't need to select a binsize

21 / 31

Data by percentile rank
PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly in�uence what your plot looks like

We can overcome this problem if we convert the data into a sorted list of
percentile ranks

Advantages

Don't need to select a binsize

Easier to compare similarities and differences of different data distributions

21 / 31

Data by percentile rank
PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly in�uence what your plot looks like

We can overcome this problem if we convert the data into a sorted list of
percentile ranks

Advantages

Don't need to select a binsize

Easier to compare similarities and differences of different data distributions

Different classes of data distributions have distinct shapes

21 / 31

Data by percentile rank
PMFs are handy exploratory tools, but as with histograms, the binwidth can
strongly in�uence what your plot looks like

We can overcome this problem if we convert the data into a sorted list of
percentile ranks

Advantages

Don't need to select a binsize

Easier to compare similarities and differences of different data distributions

Different classes of data distributions have distinct shapes

The cumulative distribution function (CDF) lets us map between percentile rank
and each value in a data column

21 / 31

Creating CDFs in R
ggplot2 comes with a handy convenience function stat_ecdf() , which lets you
create CDF functions from your data

22 / 31

Creating CDFs in R
ggplot2 comes with a handy convenience function stat_ecdf() , which lets you
create CDF functions from your data

county %>%
 ggplot() +
 stat_ecdf(mapping = aes(x = mean_work_travel)) +
 labs(y = "CDF")

22 / 31

Creating CDFs in R
We can do all the usual operations, such as grouping by state

22 / 31

Creating CDFs in R
We can do all the usual operations, such as grouping by state

county %>%
 filter(state == "Virginia" | state == "Maryland") %>%
 ggplot() +
 stat_ecdf(mapping = aes(x = mean_work_travel, color = state)) +
 labs(y = "CDF")

22 / 31

Computing the CDF
To compute the CDF, we use the cume_dist() function along with filter() ,
group_by() , and mutate() :

va_md_cdf_df <- county %>%
 filter(state == "Virginia" | state == "Maryland") %>%
 group_by(state) %>%
 mutate(cdf = cume_dist(mean_work_travel)) %>%
 select(state, mean_work_travel, cdf)

23 / 31

Get CDF data out of plot

state mean_work_travel cdf

Virginia 13.8 0.0074627

Virginia 15.4 0.0223881

Virginia 15.4 0.0223881

Virginia 15.5 0.0298507

Virginia 15.6 0.0373134

Virginia 16.3 0.0447761

Virginia 16.6 0.0522388

Virginia 16.7 0.0597015

Virginia 16.9 0.0671642

Virginia 17.2 0.0746269

23 / 31

Tidy data

24 / 31

Principles

1. Each variable must have its own column.

2. Each observation (case) must have its own row.

3. Each value must have its own cell.

25 / 31

Why should we care?
First, according to R for Data Science,

26 / 31

http://r4ds.had.co.nz/

Why should we care?
First, according to R for Data Science,

1. There’s a general advantage to picking one consistent way of storing data. If you have a
consistent data structure, it’s easier to learn the tools that work with it because they have
an underlying uniformity.

2. There’s a speci�c advantage to placing variables in columns because it allows R’s
vectorised nature to shine. As you learned in mutate and summary functions, most built-in
R functions work with vectors of values. That makes transforming tidy data feel particularly
natural.

26 / 31

http://r4ds.had.co.nz/

Why should we care?
First, according to R for Data Science,

1. There’s a general advantage to picking one consistent way of storing data. If you have a
consistent data structure, it’s easier to learn the tools that work with it because they have
an underlying uniformity.

2. There’s a speci�c advantage to placing variables in columns because it allows R’s
vectorised nature to shine. As you learned in mutate and summary functions, most built-in
R functions work with vectors of values. That makes transforming tidy data feel particularly
natural.

Translation: Getting data into this form allows you to work on entire columns at a
time using short and memorable commands

26 / 31

http://r4ds.had.co.nz/

Why should we care?
First, according to R for Data Science,

1. There’s a general advantage to picking one consistent way of storing data. If you have a
consistent data structure, it’s easier to learn the tools that work with it because they have
an underlying uniformity.

2. There’s a speci�c advantage to placing variables in columns because it allows R’s
vectorised nature to shine. As you learned in mutate and summary functions, most built-in
R functions work with vectors of values. That makes transforming tidy data feel particularly
natural.

Translation: Getting data into this form allows you to work on entire columns at a
time using short and memorable commands

If you've programmed before, you are probably familiar with loops. In other languages,
data manipulation may require you to tell your computer to scan the tabular dataset
one cell at a time.

26 / 31

http://r4ds.had.co.nz/

Why should we care?
First, according to R for Data Science,

1. There’s a general advantage to picking one consistent way of storing data. If you have a
consistent data structure, it’s easier to learn the tools that work with it because they have
an underlying uniformity.

2. There’s a speci�c advantage to placing variables in columns because it allows R’s
vectorised nature to shine. As you learned in mutate and summary functions, most built-in
R functions work with vectors of values. That makes transforming tidy data feel particularly
natural.

Translation: Getting data into this form allows you to work on entire columns at a
time using short and memorable commands

If you've programmed before, you are probably familiar with loops. In other languages,
data manipulation may require you to tell your computer to scan the tabular dataset
one cell at a time. R can do this,

26 / 31

http://r4ds.had.co.nz/

Why should we care?
First, according to R for Data Science,

1. There’s a general advantage to picking one consistent way of storing data. If you have a
consistent data structure, it’s easier to learn the tools that work with it because they have
an underlying uniformity.

2. There’s a speci�c advantage to placing variables in columns because it allows R’s
vectorised nature to shine. As you learned in mutate and summary functions, most built-in
R functions work with vectors of values. That makes transforming tidy data feel particularly
natural.

Translation: Getting data into this form allows you to work on entire columns at a
time using short and memorable commands

If you've programmed before, you are probably familiar with loops. In other languages,
data manipulation may require you to tell your computer to scan the tabular dataset
one cell at a time. R can do this, but it's slow...

26 / 31

http://r4ds.had.co.nz/

Why should we care?
First, according to R for Data Science,

1. There’s a general advantage to picking one consistent way of storing data. If you have a
consistent data structure, it’s easier to learn the tools that work with it because they have
an underlying uniformity.

2. There’s a speci�c advantage to placing variables in columns because it allows R’s
vectorised nature to shine. As you learned in mutate and summary functions, most built-in
R functions work with vectors of values. That makes transforming tidy data feel particularly
natural.

Translation: Getting data into this form allows you to work on entire columns at a
time using short and memorable commands

If you've programmed before, you are probably familiar with loops. In other languages,
data manipulation may require you to tell your computer to scan the tabular dataset
one cell at a time. R can do this, but it's slow...

The "vectorized" tools of tidyverse are both faster and easier to understand!

26 / 31

http://r4ds.had.co.nz/

Why should we care?
There's a theoretical foundation to this, actually

26 / 31

Why should we care?
There's a theoretical foundation to this, actually

Closely related to the formalism of relational databases

26 / 31

Why should we care?
There's a theoretical foundation to this, actually

Closely related to the formalism of relational databases

If you follow these rules, your data will be in Codd's 3rd normal form

26 / 31

https://en.wikipedia.org/wiki/Third_normal_form

Why should we care?
There's a theoretical foundation to this, actually

Closely related to the formalism of relational databases

If you follow these rules, your data will be in Codd's 3rd normal form (if this
means anything to you)

26 / 31

https://en.wikipedia.org/wiki/Third_normal_form

Why should we care?
There's a theoretical foundation to this, actually

Closely related to the formalism of relational databases

If you follow these rules, your data will be in Codd's 3rd normal form (if this
means anything to you)

Helpful if you are working with a large or complex enough dataset that you need
to store in a formal database, such as SQL databases (Postgresql, Mysql)

26 / 31

https://en.wikipedia.org/wiki/Third_normal_form

Why should we care?
There's a theoretical foundation to this, actually

Closely related to the formalism of relational databases

If you follow these rules, your data will be in Codd's 3rd normal form (if this
means anything to you)

Helpful if you are working with a large or complex enough dataset that you need
to store in a formal database, such as SQL databases (Postgresql, Mysql)

Practically speaking, the tidying process makes the categories in your data more
clear

26 / 31

https://en.wikipedia.org/wiki/Third_normal_form

Why should we care?
There's a theoretical foundation to this, actually

Closely related to the formalism of relational databases

If you follow these rules, your data will be in Codd's 3rd normal form (if this
means anything to you)

Helpful if you are working with a large or complex enough dataset that you need
to store in a formal database, such as SQL databases (Postgresql, Mysql)

Practically speaking, the tidying process makes the categories in your data more
clear

It makes analysis much easier too, because you can easily subdivide your data by
category, and apply transformations where needed

26 / 31

https://en.wikipedia.org/wiki/Third_normal_form

Why should we care?
There's a theoretical foundation to this, actually

Closely related to the formalism of relational databases

If you follow these rules, your data will be in Codd's 3rd normal form (if this
means anything to you)

Helpful if you are working with a large or complex enough dataset that you need
to store in a formal database, such as SQL databases (Postgresql, Mysql)

Practically speaking, the tidying process makes the categories in your data more
clear

It makes analysis much easier too, because you can easily subdivide your data by
category, and apply transformations where needed

Provides a standardized, "best practices" way to structure and store our datasets

26 / 31

https://en.wikipedia.org/wiki/Third_normal_form

Why should we care?
There's a theoretical foundation to this, actually

Closely related to the formalism of relational databases

If you follow these rules, your data will be in Codd's 3rd normal form (if this
means anything to you)

Helpful if you are working with a large or complex enough dataset that you need
to store in a formal database, such as SQL databases (Postgresql, Mysql)

Practically speaking, the tidying process makes the categories in your data more
clear

It makes analysis much easier too, because you can easily subdivide your data by
category, and apply transformations where needed

Provides a standardized, "best practices" way to structure and store our datasets

Note that you may not collect or input your data straight into tidy format

26 / 31

https://en.wikipedia.org/wiki/Third_normal_form

Tidying ≠ Cleaning

Data tidying does not encompass the entire data cleaning process

Data tidying only refers to reshaping things, such as moving columns and rows
around

Cleaning operations, such as correcting spelling errors, renaming variables, etc., is
a separate topic

27 / 31

tidyr() package

28 / 31

Summary of tidyr() package

29 / 31

Summary of tidyr() package
Functions (commands) that allow you to reshape data

29 / 31

Summary of tidyr() package
Functions (commands) that allow you to reshape data

Oriented towards the kinds of datasets we've worked with previously, each column
may be a different data type (numeric, string, logical, etc)

29 / 31

Summary of tidyr() package
Functions (commands) that allow you to reshape data

Oriented towards the kinds of datasets we've worked with previously, each column
may be a different data type (numeric, string, logical, etc)

Functions (commands) are typed in a way that's very similar to the dplyr verbs,
such as filter() and mutate()

29 / 31

Summary of tidyr() package
Functions (commands) that allow you to reshape data

Oriented towards the kinds of datasets we've worked with previously, each column
may be a different data type (numeric, string, logical, etc)

Functions (commands) are typed in a way that's very similar to the dplyr verbs,
such as filter() and mutate()

tidyr verbs

29 / 31

Summary of tidyr() package
Functions (commands) that allow you to reshape data

Oriented towards the kinds of datasets we've worked with previously, each column
may be a different data type (numeric, string, logical, etc)

Functions (commands) are typed in a way that's very similar to the dplyr verbs,
such as filter() and mutate()

tidyr verbs

gather() : transforms wide data to narrow data

29 / 31

Summary of tidyr() package
Functions (commands) that allow you to reshape data

Oriented towards the kinds of datasets we've worked with previously, each column
may be a different data type (numeric, string, logical, etc)

Functions (commands) are typed in a way that's very similar to the dplyr verbs,
such as filter() and mutate()

tidyr verbs

gather() : transforms wide data to narrow data

spread() : transforms narrow data to wide data

29 / 31

Summary of tidyr() package
Functions (commands) that allow you to reshape data

Oriented towards the kinds of datasets we've worked with previously, each column
may be a different data type (numeric, string, logical, etc)

Functions (commands) are typed in a way that's very similar to the dplyr verbs,
such as filter() and mutate()

tidyr verbs

gather() : transforms wide data to narrow data

spread() : transforms narrow data to wide data

separate() : make multiple columns out of a single column

29 / 31

Summary of tidyr() package
Functions (commands) that allow you to reshape data

Oriented towards the kinds of datasets we've worked with previously, each column
may be a different data type (numeric, string, logical, etc)

Functions (commands) are typed in a way that's very similar to the dplyr verbs,
such as filter() and mutate()

tidyr verbs

gather() : transforms wide data to narrow data

spread() : transforms narrow data to wide data

separate() : make multiple columns out of a single column

unite() : make a single column out of multiple columns

29 / 31

Simple examples from textbook

Follow along in RStudio

30 / 31

Credits

Slides in the section Statistical distributions adapted from the Chapter 1
OpenIntro Statistics slides developed by Mine Çetinkaya-Rundel and made
available under the CC BY-SA 3.0 license.

31 / 31

https://github.com/OpenIntroOrg/openintro-statistics-slides
http://creativecommons.org/licenses/by-sa/3.0/us/

