Schedule

Week Class Date Topic Materials Due Dates
Week 1 1 May-21 Beginnings: Course overview and setup
2 May-22 The data scientist’s toolbox I
3 May-23 The data scientist’s toolbox II Reading 1
4 May-24 Introduction to data and visualization I Reading 2
5 May-25 Introduction to data and visualization II Can Twitter predict election results
Reading 3
Week 2 May-28 Memorial Day (No class) Visualization mini-assignment
Reading 4
6 May-29 Data Wrangling I Reading 5
7 May-30 Data Wrangling II Homework 1
Reading 6
8 May-31 Statistical distributions I Reading 7
9 Jun-01 Statistical distributions II Reading 8
Week 3 10 Jun-04 Tidy data Reading 9
11 Jun-05 Introduction to the Midterm Project dataset
12 Jun-06 Web scraping I Homework 2
13 Jun-07 Web scraping II
14 Jun-08 Midterm project conferences and R questions Reading 10
Week 4 15 Jun-11 Inference and simulation I Reading 11
16 Jun-12 Inference and simulation II
17 Jun-13 Inference and simulation III Reading 12
18 Jun-14 Midterm project presentations
Overview of final project
Inference and simulation IV
Midterm project
19 Jun-15 Modeling I Homework 3
Reading 13
Week 5 20 Jun-18 Modeling II Reading 14
21 Jun-19 Modeling III Reading 15
22 Jun-20 Course wrap-up Homework 4
Homework 5 (extra credit)
Jun-22 Final Interview
Time: 10:30am – 1:15pm
Final project