Materials

  • Class Notes

    Class 22: Course wrap-up

    Slides

  • Class Notes

    Class 21: Modeling III

    Slides

  • Activity

    Model selection activity

    A guided activity to practice building univariate and multivariate linear regression models and how to perform model selection using k-fold cross-validation.

  • Class Notes

    Class 20: Modeling II

    Slides

  • Class Notes

    Class 19: Modeling I

    Slides

  • Class Notes

    Class 18: Inference and simulations IV

    Slides

  • Class Notes

    Class 17: Inference and simulations III

    Slides

  • Class Notes

    Class 16: Inference and simulations II

    Slides

  • Class Notes

    Class 15: Inference and simulations I

    Slides

  • Class Notes

    Class 14: Midterm project conferences and R questions

    Slides

  • Class Notes

    Class 13: Web scraping II

    Slides

  • Activity

    Web scraping II activity

    Continuation of web-scraping activity.

  • Class Notes

    Class 12: Web scraping I

    Slides

  • Activity

    Web scraping activity

    Interactive demo on how to use the rvest web-scraping tools.

  • Class Notes

    Class 11: Introduction to the Midterm Project dataset

    Slides

  • Class Notes

    Class 10: Tidy data

    Slides

  • Activity

    Tidy gradebook activity

    Interactive demonstration showing how to apply the Tidy Data principles to a typical classroom gradebook.

  • Class Notes

    Class 9: Statistical distributions II

    Slides

  • Activity

    Chicago vehicle towing data activity

    Additional practice with the dplyr using vehicle towing data posted by the city of Chicago.

  • Class Notes

    Class 8: Statistical distributions I

    Slides

  • Class Notes

    Class 7: Data Wrangling II

    Slides

  • Activity

    dplyr demos II

    Continuation of the interactive demonstration of the major features found in the dplyr package.

  • Reading

    Cumulative distribution functions

    Reading about how to use R to compute, visualize, and apply percentiles of a dataset.

  • Reading

    Probability mass functions

    Reading about how to connect probabilities with values in a dataset.

  • Class Notes

    Class 6: Data Wrangling I

    Slides

  • Activity

    dplyr demos I

    An interactive demonstration of the major features found in the dplyr package.

  • Guide

    Describing univariate and bivariate data

    How to write about visualizations of univariate (one variable) and bivariate (two variables) data.

  • Class Notes

    Class 5: Introduction to data and visualization II

    Slides

  • Class Notes

    Class 4: Introduction to data and visualization I

    Slides

  • Activity

    RMarkdown practice activity

    Practice editing RMarkdown files and saving to Github.

  • Class Notes

    Class 2: The data scientist’s toolbox

    Slides